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RADIAL OSCILLATIONS OF VAPOR-GAS BUBBLES 

N. S. Khabeev UDC 532.529 

We are concerned with vapor-gas bubbles executing small radial oscillations in a liquid. 
The dynamics of vapor -gas bubbles has important bearing, in particular, on sound propagation 
in the top layer of the ocean. The description of the process in this situation is far more 
complicated than in the case of a gas bubble or a vapor bubble. The attenuation of sound in 
a liquid containing vapor -gas bubbles is clearly related to the decay rate of the radial 
pulsations of the bubbles. 

Here weinvestigate the influence of interdiffusion of the components of a vapor-gas 
mixture on the decay rate of small oscillations of vapor-gas bubbles. We show that the 
addition of a minute quantity of an inert gas to a vapor bubble lowers the damping of the 
bubble oscillations significantly. We confirm the fact that the derived analytical relations 
are in good agreement with the experimental data on the damping of radial oscillations of gas 
and steam bubbles in water. We also discuss the linear radial pulsations of vapor-gas 
bubbles in a sound field. We derive asymptotic expressions for the bubble response function, 
which are valid for different frequency ranges. We compare these relations with the experi- 
mental data for steam-air bubbles in subcooled water and establish good agreement between 
them. 

i. Fundamental Equations 

The problem of spherically symmetric process around vapor -gas bubbles has been formu- 
lated previously [I, 2], and their small oscillations have been investigated in detail [3-5]. 
The system of equations describing linear radially symmetric oscillations of a bubble filled 
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with a liquid vapor and a gas that is insoluble in the liquid is given in [3], where it is 
assumed that a uniform pressure exists in the bubble and interdiffusion of the components 
of the vapor-gas mixture is taken into account. 

The equations for the heat input, continuity, and the state of the phases in spherical 
Eulerian coordinates (r, t) have the form 

du V dUg p dp t a ( ao.~_ ) D ak a 
pv- .~ -+pg-~- - -= -~-Tf+-~- -~ -  kr ~ + p  - f f  TF(Uv--Ug),  

OPv + t o 
O--'F - - ~ 7 - [ P v ( V + w v ) r ~ ] = O ,  O ~ r < R ( t ) ,  

I o ok 
ae.._.g + --#r ~ -  [eg (v + wg) r~] = O, O~% = - -  OvWv = pD ~-~  
at ( i . i )  

P = Pv + Pg = (PgBe + Pv By) T = pBT, 

Tv = Tg = T, Uv = cvvT,  ug = cvgT, ut = czTl, 9z = const, 

P,k r+7 v,, O-;)=TWr , R<r<oo,  

where u is the specific internal energy, T is the temperature, v is the velocity, R is the 
bubble radius, D is the interdiffusion coefficient, Cp and c V are the specific heats of the 
mixture at constant pressure and at constant volume, cs is the specific heat of the liquid, 
X is the thermal conductivity, w is the diffusion rate, Vs is the particle velocity of the 
liquid on the bubble surface, B is the gas constant, p is the pressure, p is the density, 
and k is the concentration of the vapor component. The subscripts V, g, s and R refer to 
the parameters of the vapor, the gas, the liquid, and the phase interface, respectively. 

The boundary conditions on the phase interface r = R(t) have the form in the quasi- 
equilibrium approximation 

Tt = Tv  = Ts(pvR ), ktOTtlar - -  kOT/Or = ]l, ( 1 . 2 )  

o ~ ( h  - v - w~)  = p , ( k  - ~,,) = / ,  pg(h - ~ - wg) = 0 

(~ is the specific heat of vaporization). In addition, 

r = O: Ok~Or = OT/Or = O; r ----- oo: l'z = To. (1.3) 

The C l a u s i u s - C l a p e y r o n  e q u a t i o n  f a r  from any c r i t i c a l  s t a t e ,  when PV << Ps can be w r i t t e n  

dpv/dT = lpv IT. (1.4) 

The equation for small radial oscillations of a bubble in an incompressible liquid has the 
form 

R'vz R = (p --  p~o --  2o/R)lpz. ( 1 . 5 )  

Here p~ is the pressure far from the bubble, and o is the coefficient of surface tension of 
the liquid. 

If the homobaricity condition holds, an ~ integral exists for the heat-input equation for 
the gaseous phase, which has the form for linear problems 

dp 3 p (B ok + (r - -  1) k ~-r dt = "R - -  Fpv~ -F v.B:- Bg) D ~ R R 

( r  = Cp/C V is the adiabatic exponent of the vapor-gas mixture). 

In the case of small oscillations, the bubble radius can be described by the real part 
of the expression 

R = R o [ l  + 6 exp (ht)], ( 1 . 7 )  

where 6 is a complex number corresponding to the condition 6[ << i; to = Im {h} is the oscil- 
lation frequency, and the subscript 0 refers to the parameters in the unperturbed state. 

We linearize the system (1.1)-(1.6). Let p0, O0 , K 0 be small deviations of the pres- 
sure, temperature, and concentration from the equilibrium state: 

p = po[i + P~ T = To[i + 0~ ~)l, k = ko[i + K~ T)]. (1.8) 
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We assume that 

After linearization of 
it can be rewritten as 

PV ~ Ps 

po = p exp (H~), 0 ~ = 0(~) exp (H~), 

K ~ ---- K (g) exp (Hx) (~ ---- r / B  o, x = tDIB~, H = hB~o/D). 
( 1 . 9 )  

the system (1.1)-(1.6) and transformation to dimensionless variables, 
follows with allowance for relations (1.7)-(1.9) and the condition 

V R = 8 H  - -  J]3,  Vza = 6H; ( 1 . 1 0 )  

p = HVta H- 2 _ S6; ( i. i i) 

OK 

0 ~ 2 0 (1.14) HK=VSK, V~=a-~ ~ +T~; 

HOl = LeN~O5  ( 1 , 1 5 )  

00, 1 X OO I = j .  Po . (1  16)  
0~ 1 ~,~ 0~ t 3pzLe~k 1 '  

OK J ( i  - -  k~ (1 17) a L-- 
( Bg KId=l) O R = M  P + "~-o 

k 1 clT-~, k~ .~- BV --  B------K B v --  B.._.._..~g cvT o 
"-~ BoF ' ks -'~ cp '~ ~ = - ' ~ "  

a s a~ Xt ~'o S ----- 2. o 
L% =--if, Le,=-~-, a'fp-~'c~' % =  Poc---~ ' Bop o' (1.18) 

~vro RoVe--- ~ M = - - -y - ,  II = -ff , Ps = P= + 20B__j,. 

v = V D___ exp (H~), ] = J PoD exp (H~) 
R o 3R o �9 

The solutions of Eqs, (i.12), (i.14), and (1.15) subject to the boundary conditions at r = 
R 0 and r ~ ~ and also the condition of finite temperature and finite concentration at the 
center of the bubble can be written in the form 

s,=s, ,  

A ---- 8a --(i -- ilr) P 
sh~/T 2 , 8R=AsP, J----A~P, 

t - -  k o H H 

A= (I + "V"~1) M~'I/~'o Jr" B, (M -- I Jr I/s 
= ~s ( I ' -  %)  ( I  - B= IBI ) I8  ( I  - -  Leo) - -  ' r  

A 3 - - - - M + k a A = ,  A 4 = ~ + k  4 ( t +  -~o + B ,  , 

ka (t --  ks) MBg 
= 3koBoB 1 , B z - -  ~ cth V - ~  - -  Iv B,  = y r ~  s c th  yr~-~= _ t .  

The condition for the existence of a nontrivial solution of 
yields a transcendental characteristic equation in H: 

the system of linear equations 

H + 3FII~H -1 - -  r + SF12(r - -  H ) H  -= = O, 
---- 3L%B=[F  ( M - -  i)  + 1] + F [ i  + k 2 ( i - - k o )  + 
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+ Le o k 3 (i - -  I%)(B=/B, - -  i)/(i - -  Leo) + Le o B2k4] [ ( i  + V ~ )  M~,d~,o + 

+, , .  + 

In the special case of a vapor bubble (k o = I) the transcendental equation (1.19) coincides 
with the analogous equation obtained in [6]. 

2. Asymptotic Solutions of the Characteristic Equation 

In the case of sufficiently large bubbles, when the influence of heat and mass transfer 
on their dynamics is slight, we can neglect capillary effects and seek a solution of Eq. 
(1.19) in the form 

H = ]/r3-FII(cos ~ q- i sin ~), sin ~ ~. 1, cos ~ < 0, ]cos cpl << t.  ( 2 . 1 )  

The following relations hold over a sufficiently broad range of the parameters of the 
system liquid + vapor-gas bubble: 

~'l al 
~-~0>>t, ~?0 <<1, L e N I ,  k l N l  , ( 2 . 2 )  

t -- B~/B I t 

Using t h e  r e p r e s e n t a t i o n  ( 2 . 1 )  and t h e  bounds ( 2 . 2 ) ,  we can f i n d  an a s y m p t o t i c  s o l u t i o n  
of Eqs. (1.19) for ~ >> 1 [7]. We obtain an expression for the logarithmic decrement of the 
oscillations of large vapor-gas bubbles: 

A T = - - 2 n c o s e p = 3 ~ ,  I I>>t ,  ]/P-e>>r 

= r -- 1 + k o ( r -  t) Bv~ ;~z -~o 

where Pe = 2Ro]/r~po/Pl/ao is the P~clet number. 

( t -  ko) Bg ~ ~__~]-1, 
+ FB ~ 

( 2 . 3 )  

In special cases (k 0 = 0 and D = 0), Eq. (2.3) coincides with the expression for the 
logarithmic decrement for the thermal damping of gas bubble oscillations without phase tran- 
sitions [8], and forko =I coincides with the corresponding expression for vapor bubbles [9, 
10]. 

For a gas bubble and a vapor bubble Eq. (2.3) has the respective forms 

3~ (r - t). (2.4) Ar = .  V ~ "  

AT = 3~ (p-- i) [.l/p_~ t + us--~z V ~ v  ] x o  ~ . (2.5) 

(ko) 2% r  
AT ----- ~ ,  l Ie ---- al Jk=o I[k=o 

' r ao -1/4 /(ko) , 

( 2 . 6 )  

Equation (2.3) can be rewritten 

This is a convenient representation insofar as Pe does not depend on k0, and the dependence 
of A on k 0 is manifested only through the function f(k0). 

3. Dampin R of Free Oscillations 

The function f(k0) = AT~/3~ is plotted in Fig. 1 for a steam-air bubble in water at 
atmospheric pressure. The interdiffusion coefficient of the steam-air components of the 
mixture was varied. Curve i was calculated according to the actual value of D, which is 
given by the equation [ii] D = D0(T/273) n, where D O = 2.16"10 -5 m2/sec and n = 1.8. Curves 
2-5 correspond to D = i0 -s, I0 -e, 10 -7 , and 10 -8 m2/sec, respectively. We see that the func- 
tion f(k 0) is highly nonlinear. In the interval of k 0 close to unity, where the inequality 
1 - k 0 q 1 holds, we obtain Eq. (2.3) in the asymptotic form 

(3.1) 
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It is evident from Fig. 1 and from Eq. (3.1) with regard for (2.2) that the addition of 
a minute quantity of inert gas to a vapor bubble reduces the damping of its oscillations 
significantly. This effect is particularly conspicuous for small values of the diffusion 
coefficient. This is attributable to the fact that the phase transition rate decreases with 
a decrease in D, since the vapor component loses its ability to penetrate rapidly through 
the shielding gas layer on the surface of the bubble. 

It is also important to investigate the behavior of vapor bubbles for large values of 
the diffusion coefficient (formally, in the limit D ~ ~). This situation cannot be treated 
as a special case of Eq. (2.3), because its derivation was based on the representation B z = 
~H, which is valid for large values of H = hR~/D. The following representation of B z is valid 
for sufficiently large values of D (D = ~) and, hence, for small H: 

B x = ] / H  c t h l / H - -  I =/-//3, IHI<< I. (3 .2)  
Carrying out analogous calculations associated with the evaluation of the real part of 

the function r (1.19) and taking (3.2) into account, we obtain an expression for the loga- 
rithmic decrement of the vapor-gas bubble: 

3 [r-i ] 
A r = - - 2 n c o s ~ =  [ ] / P e  +(Pe+25]/~+c~) ' ( 3 . 3 )  

c z = 3 l ~o , M B g X, a~a~t " 
Bo Xo 

It is evident that the expression for the logarithmic decrement in the case D = ~ has a more 
complicated form (in particular, a more complicated dependence on the bubble radius) than 
for the real value of D [Eq. (2.3)]. 

Figure 2 shows AT~Pe/3~ as a function of the equilibrium vapor concentration k 0 for 
oscillations of a steam-gas bubble in water at atmospheric pressure. Curves 1-3 correspond 
to values of the bubble radius R 0 = 10 -2, i0 -a, and 10 -4 m and were calculated according to 
Eq. (3.3). Curve 3 is shown dashed in the interval k 0 ~ 0.7, because the oscillations of 
such small bubbles decay rapidly for large vapor contents, and the assumptions (2.1) under- 
lying the solution no longer hold. The dot-dash curve corresponds to the real value of the 
diffusion coefficient (curve 1 in Fig. i). We see that the simplifying assumption of the 
absence of diffusion resistance or a uniform concentration in the bubble for large bubbles 
creates an appreciable disparity with the solution obtained for real values of the diffusion 
coefficient. This simplification is valid for small vapor -gas bubbles (R 0 ~ 10 -4 m). 

Figure 3 shows the logarithmic decrement of the oscillations of gas and vapor bubbles at 
atmospheric pressure as a function of the equilibrium radius R0, calculated according to 
Eqs. (2.4) and (2.5). Curves 1-4 correspond to the following systems: i) steam bubble in 
water at T = 373 K; 2) helium bubble in water at T = 300 K; 3) air bubble in water at T = 
300 K; 4) vapor bubble in liquid helium at T = 4.2 K. It is evident from Fig. 3 that the 
damping of a steam bubble in water is much stronger than the damping of an air bubble, on 
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account of phase transition. The damping of a bubble filled with helium gas is also much 
stronger than for an air bubble, owing to the large thermal diffusivity of helium. It is 
interesting that the damping of a vapor bubble in liquid helium at the boiling point for 
atmospheric pressure is far weaker, despite the occurrence of phase transitions (it is much 
weaker than the damping of a helium bubble without phase transitions; curve 2). This is 
attributable to the low values of the thermal conductivities of liquid helium and its vapor 
and especially to the high density of the vapor at low temperatures. In this case the den- 
sity ratio of the phases Ps ~ i0, whereas for curves 1-3 Ps ~ 103 [II]. 

The damping component associated with the acoustic radiation of energy from the oscil- 
lating bubble in a compressible liquid must also be taken into account in the oscillations 
of large bubbles (R > i mm). The expression for this component has the form [i] 

(3.4) 
A==TF Pz 

(a is the sound velocity in the liquid). For small bubbles it is important to include the 
damping component associated with the viscosity of the liquid [i]: 

=pT 0 (3.5) 

(H is the viscosity coefficient of the liquid). 

The total logarithmic decrement A can be determined for A < i as the sum of the indi- 
vidual components : 

A=A~ +A= +A,. (3.6) 

The theoretical curves calculated according to Eqs. (2.4), (2.5), and (3.4)-(3.6) are 
compared in Fig. 4 with experimental data [12] on the damping of radial oscillations of large 
(R ~ i0 mm) steam (circles, 100QC) and air (light circle, 20~ bubbles in water (curves 1 
and 2, respectively). 

Morioka [12], who published the first experimental data on the damping of oscillations 
of vapor and gas bubbles, but without any reference to the papers in which Eq. (2.5) was 
derived [9, 10], gave the dashed curve for steam bubbles, which was calculated according to 
Eq. (2.4) for the thermal damping of a gas bubble, except that the corresponding parameters 
of the vapor were used instead of the thermophysical properties of the gas (mainly the adi- 
abatic exponent). Since the thermophysical properties of steam under standard conditions do 
not differ much from the properties of air, this curve is close to the corresponding curve 
for an air bubble in water. The disregard of phase transitions created a discrepancy of more 
than an order of magnitude with the experimental data on the damping of vapor bubble oscilla- 
tions. 

It is evident from Fig. 4 that the theoretical curves calculated according to Eq. (3.6) 
with the application of expressions (2.4), (2.5), and (3.4) exhibit good agreement with the 
experimental results both for air bubbles and for steam bubbles in water. 

4. Oscillations of Bubbles in a Sound Field 

In the case of small oscillations of bubbles under the action of a sound pressure PAx 
exp (imt), the bubble radius can be described by the real part of the expression 

R=R0[I +aexp(imt)], PA<<P~, (4.1) 

where ~ is a complex number corresponding to the condition [~I ~ i, ~ is the angular fre- 
quency of the sound field, and p~ is the hydrostatic pressure. As in the case of free oscil- 
lations, we assume that the small deviations of all the parameters from the equilibrium state 
can be represented in the form A = A ~ exp (i~t) (where A ~ is the amplitude of an arbitrary 
parameter). 

Solving the system of linearized equations as in the case of free oscillations, we ob- 
tain the equation for the oscillation amplitude [3] 

T J  
E = i -- 3FB s (M -- I + I/r) z[' -- FEIE,, 
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The analytical relation (4.2) obtained for the response function of a vapor-air bubble 
in water as a function of the dimensionless frequency ~ is compared with the experimental 
data [13] in Fig. 5. The results of very delicate experiments to determine the compressibil- 
ity of vapor-air bubbles executing radial oscillations in a sound field are given in [13] 
for small subcooling. The scatter of the bubble radii fell within the limits 0.02 cm < R 0 < 
0.Ii cm. The temperature of the system at atmospheric pressure was varied in the interval 
370 K < T < 373 K, and the frequency of the sound field was varied in the interval 0.i Hz < 
f = ~/2~ < 150 Hz. 

Assuming that the system liquid + vapor-gas bubble is in thermal and mechanical equi- 
librium in the absence of a sound field, we can relate the degree of subcooling of the sys- 
tem to the gas content of the bubble. Assuming that the partial pressure of the vapor com- 
ponent corresponds to the saturation condition, we obtain the following from the equations 
of state of a calorically ideal gas (i.i): ps(To)/(po--ps(To))----ko~g/((i- ko)~v)~ where pg and 

[ Pe(Po Pv\lare the molecular masses of the gas and vapor components. Accordingly k 0 = I +-~v Ps~To) 

I)I -I �9 For a steam-air bubble in water at atmospheric pressure, the temperatures T = 372, 
IJ 

371, 370 K correspond to k~ = i - k 0 ffi 0.05, 0.i, 0.15. These values are represented by 
curves 2-4, respectively, in Fig. 5, and curve I was calculated for a steam bubble (T = 
373 K); the experimental points are given for 372 K < T < 373 K (light circles) and for 
370 K < T < 371 K (light triangles). 

The expression (4.2) for the bubble compressibility is simplified in application to the 
experimental conditions reported in [13]: 

P~o (t -~'VT~) )~l ao l ( l - -ko)M~tvLeo~l ( t  + ~ f ' ~ )  ( 4 . 3 )  
- -  " k o B l ~ t g ~ ,  v x - 

Equation (4.3) is further simplified for a vapor bubble: 

P~ (t + V ~ )  uM ~lav 
PA ~ ~VaZ" 

E q u a t i o n  ( 4 . 3 )  i s  s i m p l i f i e d  f o r  t h e  i n t e r v a l  10 < ~ < 102 , i n  w h i c h  t h e  b u l k  o f  t h e  e x p e r i -  
m e n t a l  d a t a  was  o b t a i n e d  i n  [ 1 3 ] ,  b e c a u s e  t h e  f u n c t i o n  B 1 c a n  b e  r e p r e s e n t e d  i n  t h e  f o r m  
B,  = i Q a l / 3 D .  T h e  f i n a l  e x p r e s s i o n  f o r  t h e  r e s p o n s e  f u n c t i o n  now h a s  t h e  f o r m  
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_•A = z M~tav V =  t ~v( l - -~)  

For ~ ~ i the response function of the vapor-gas bubble obeys the equations (which were first 
published in [3]) 

P= [ 3(1 +31) $1.1-1 2~ 
lim I ~l-.-~-a = l + t ~ o l ~ v ( l _ ~ )  S , =  
~1~0 ~ RoP~" 

I t  i s  e v i d e n t  from Fig .  5 t h a t  t h e  a d d i t i o n  of a minute  q u a n t i t y  of  a i r  (kg = 0.05) to  
a vapor bubble produces  a s i g n i f i c a n t  (a lmos t  an o rde r  of  magni tude)  d e c r e a s e  in t h e  compres- 
s i b i l i t y  of  t h e  o s c i l l a t i n g  bubble a t  low f r e q u e n c i e s .  The c a l c u l a t e d  curves  a r e  in good 
agreement with the experimental data. Capillary effects were small (S ~ i) for the experi- 
mental bubble sizes in [13]. Consequently, the dependence of the response function on the 
bubble radius is expressed only in terms of the dimensionless frequency ~ = ~R~a[ I. 

Since the experiments reported in [13] were conducted for small bubbles at low sound 
frequencies, an analysis can also be carried out on the basis of simpler models without non- 
uniform temperature and concentration distributions in the pulsating bubble, consistent with 
the above-indicated simplifications of the general equation (4.2). However, situations are 
possible in which the failure to take these factors into account and the use of simplified 
models can induce appreciable errors. 

The authors are grateful to R. I. Nigmatulin for a useful discussion of the results. 
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